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Abstract. The electronic states and optical transition properties of three semiconductor
nanocrystallites, Si, GaAs, and ZnSe, are studied using the empirical pseudopotential
homojunction model. The energy levels, wave functions, optical transition matrix elements,
and lifetimes are obtained for quadratic prisms with widths from 11 to 27Å. It is found that the
three kinds of prism have different quantum confinement properties. For Si prisms, the energy
gaps vary with the equivalent diameterd as d−1.37, in agreement with previous theoretical
calculations. For the samed the energy gaps are slightly different for different shapes: large
for the prism with large aspect ratio; small for the prism with small aspect ratio. The exponent
of d depends on the boundary barrier height, i.e. the extent of penetration of the wave function
into the vacuum. The wave function of the LUMO states consists mainly of bulk X states. The
optical transition matrix elements are much smaller than those of direct transition, and increase
with decreasing width. The corresponding lifetimes decrease from the millisecond range to
the microsecond range, and the change is abrupt depending on the symmetry and composition
of the wave function of the LUMO and HOMO states. For GaAs prisms, the energy gap is
also pseudo-direct, but the optical transition matrix elements are larger than those of Si prisms
by two orders of magnitude for the same width. For ZnSe prisms, the energy gap is always
direct, and the optical transition matrix elements are comparable with those of direct energy gap
bulk semiconductors. In some cases the symmetry of the HOMO state changes, resulting in an
abrupt decrease of the transition matrix element. The calculated lifetimes of the Si prism and
the positions of PL peaks are in agreement with experimental results for porous Si.

1. Introduction

Recent observations of visible photoluminescence (PL) in porous Si [1] and Si
nanocrystallites [2–7] suggest that Si nanoclusters may become promising material for
optical applications. The visible photoluminescence has been observed in Si nanocrystallites
embedded in an Si oxide matrix, [2, 3] Si nanocrystal colloid, [4] and Si nanoclusters
passivated with oxygen [5–7]. However, the measured emission intensity, lifetime, and
temperature dependence show a strong sensitivity to surface processing, such as chemical
treatment and oxidation. There has been much theoretical research on the Si nanocluster to
study the quantum confinement effect, including tight-binding calculations [8, 9], density-
functional pseudopotential calculations [10, 11], empirical pseudopotential calculation [12],
and the two-particle calculation [13] including the electron–hole Coulomb interaction
nonpertubatively. On the other hand the direct gap semiconductor nanocrystals, such as
CdSe, have been extensively studied [14–16]. The transition from the lowest unoccupied
state (LUMO) to highest occupied state (HOMO) is electric dipole allowed for all sizes.
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In this paper we study how the electronic structure of either indirect or direct energy gap
semiconductors changes from bulk to nanocrystallites. We use the empirical pseudopotential
homojunction model [17, 18] to calculate the electronic states and their corresponding optical
transition probabilities (i.e. lifetimes) for semiconductor nanoclusters, namely Si, GaAs, and
ZnSe. Because in our calculation the wave functions of the nanocrystal can be composed of
energy band states of the bulk semiconductor, the LUMO states and HOMO states can be
clearly correlated with the bulk band states at various special points of the Brillouin zone.
Section 2 gives the theoretical method. sections 3 and 4 give results for the Si and GaAs,
ZnSe nanocrystallites, respectively. Section 5 contains the summary.

2. Empirical pseudopotential homojunction model [17, 18]

We use the super-cell model to study quadratic prisms, which are arranged periodically in
three-dimensional space. The system has translational symmetries in the [110], [1̄10], and
[001] directions with periods(l

√
2/2)a, (l

√
2/2)a, andma, where l andm are integers

which determine the size of the unit cell anda is the lattice constant. Because of the
periodicity of the system, the wave function of the prism can be written in terms of its
bulk states with wave vectorsg, whereg are reciprocal-lattice vectors of the model system
enclosed within the first Brillouin zone of bulk material. Here we use the double unit cell
with the basic vectors

a1 = a

2
(1, 1, 0) a2 = a

2
(−1, 1, 0) a3 = a(0, 0, 1) (1)

instead of the usual unit cell of the diamond structure in order to satisfy the periodicity.
The components ofg along the [110], [̄110] and [001] directions are given by

g1 = 2π

l(
√

2/2)a
l1 (2)

g2 = 2π

l(
√

2/2)a
l1 (3)

l1 = −[(l − 1)/2], . . . ,0, . . . , [l/2] (4)

g3 = 2π

ma
m1 (5)

m1 = −[(m− 1)/2], . . . ,0, . . . , [m/2] (6)

where we have used the symbol [x] to denote an integer closest to but not larger thanx.
Using these bulk states as basis functions for the expansion of the wave functions of the
prism, we have

(7)

whereψn,g represents the bulk Bloch states associated with thenth band and wave vector
g.

We assume that the space between prisms is unfilled and can be considered as vacuum
region. Then, the perturbation potential in the vacuum region between prisms1V (r) = V0,
while in the prism region1V (r) = 0, whereV0 is large relative to the energy range
considered. It is positive for the conduction-band states and negative for the valence-
band states. Namely, the vacuum regions are replaced by the same bulk material with
the conduction bands rigidly shifted upward by a constant and the valence bands shifted
downward by another constant. The problem now resembles that of a homojunction. The
mixing of conduction-band state and valence-band states is neglected by solving the problem
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separately for conduction and valence bands. That means that first we project all the plane
waves on to the bulk conduction-band state subspace and the bulk valence-band subspace,
then calculate the electron and hole states of the prism in these two subspaces, respectively.
This is a reasonable approximation because the energy gap between the electron states
and hole states increases with the quantum confinement strengthening, and the mixing of
conduction-band states and valence-band states can be neglected.

Using degenerate perturbation theory, we obtain a secular equation for the prism,

|En,gδnn′δgg′ + 〈n, g|1V |n′, g′〉 − E| = 0 (8)

whereEn,g is the energy eigenvalues of the bulk. In the coordinate system withx, y andz
axes along the [110], [1̄10], and [001] directions, respectively, the matrix elements of the
perturbation potential can be obtained for the plane wave basic function.

The form factors of the empirical pseudopotentialVS(3), VS(8), VS(11), and VA(3),
VA(4), VA(11) are not enough for the double-unit-cell energy band calculation, so we fit the
atomic form factors by an analytical formula. For Si we use the analytical formula given by
Wang and Zunger [12], and for GaAs and ZnSe, we use the following analytical formulae
(in units of Ryd):

V (q) = a1+ a2q
a4

1+ exp(a5(q − a6))
for Ga

V (q) = a1+ a2 exp(a3q
a4)

1+ exp(a5(q − a6))
for As,Se

V (q) = a1+ a2 exp(a3(q − q0)
a4)

1+ exp(a5(q − a6))
for Zn (9)

where the coefficientsa1–a6 and the lattice constant a are given in table 1.

Table 1. Coefficientsa1–a6 of atomic form factors for Ga, As, Zn, and Se and lattice constants
of GaAs and ZnSe.

a1 a2 a3 a4 a5 a6 a (Å)

Ga −0.4456 0.2577 1.1794 18.77 2.0243 5.6419
As 0.2364 −0.884 −0.4801 1.946 9.903 1.9887
Zn −0.1289 0.23 −1.23 2 21.31 2.05 5.65
Se 0.15 −1.01 −0.567 2 15.45 2.1

The optical transition matrix elements and corresponding lifetime are given by

Qi
nn′ =

1

m0
|〈n|pi |n′〉|2 i = x, y, z (10)

and
1

τ
= 4αωn

3m0c2
Qnn′ (11)

where α is the fine-structure constant,ω is the photon angular frequency andn is the
refractive index.

3. Results for an Si quadratic prism

In all calculations in this paper we takel = 7, m = 7, and four lowest conduction-band
states or four highest valence-band states of the bulk as basis functions, hence we have only
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1372 basis functions in the wave-function expansion. TheV0 values are taken as 3.2 and
−2.4 eV for the conduction-band and valence-band states, respectively.

The eigenenergies of the four LUMO states and the four HOMO states forl1 = 5, 4, 3,
andm1 = 5, 4, 3, 2 structures are obtained. We found that in some cases the energies of the
four LUMO states are close, for example,l1 = 5, m1 = 5; l1 = 4, m1 = 5, 4; andl1 = 3,
m1 = 5, 4, 3, i.e. the case of normal aspect ratio, but for the cases of smaller aspect ratio
only the energies of the two LUMO states are close. From the wave functions it is clear that
for the former case the wave functions are composed of four bulk conduction-band states at
X points in theXY -plane of the Brillouin zone, while for the latter case the wave functions
are composed of two conduction-band states at X points on theZ-axis of the Brillouin zone.
This can also be verified by the effective-mass theory. For the same confinement condition
we calculated the energy of the X state electron by the effective-mass equation. For the X
states in theXY -plane, the equation is given by

−h̄
2

2

[
1

2

(
1

m1
+ 1

m2

)(
∂2

∂x2
+ ∂2

∂y2

)
+
(

1

m1
− 1

m2

)
∂2

∂x∂y
+ 1

m2

∂2

∂z2

]
f (r)+ V (r)f (r)

= Ef (r). (12)

That for the X states on theZ-axis is given by

−h̄
2

2

[
1

m2

(
∂2

∂x2
+ ∂2

∂y2

)
+ 1

m1

∂2

∂z2

]
f (r)+ V (r) = Ef (r) (13)

wherem1 andm2 are the effective mass of the electron state near the X point parallel
and perpendicular to the main axis of the energy ellipsoid sphere, respectively. Solving
equations (12) and (13) we obtain the same results as the pseudopotential calculation, i.e.,
for the case of normal aspect ratio, the energy of the electron at the X state in theXY -plane
is lower than the energy of the electron on theZ-axis, andvice versain the case of smaller
aspect ratio. Becausem1 � m2, for the case of smaller aspect ratio the electron at the X
point on theZ-axis is confined in the narrowZ-direction with the large effective massm1,
whereas in the wideX-andY -directions with very small effective massm2, its energy will
be relatively low compared to that in theXY -plane. The four or two lowest X states and
the0 state couple to each other due to the quantum confinement effect, forming the LUMO
states of the prism. In fact the ground LUMO state (C1) is always singlefold, which is
totally symmetric with respect to theX-, Y -, or Z-plane. The excited states are asymmetric
with respect to theX-, Y -, or Z-plane. The HOMO states are mainly composed of bulk
valence band states from the0 point and nearby states. We also found that the two HOMO
states are nearly degenerate, and are composed of the highest four states of the valence band
for the crystal with the double unit cell.

The energy gap as a function of the equivalent diameterd = [6V/π ]1/3 of the prism
is shown in figure 1, whered is the diameter of a sphere that has the same volume as
the prism. From figure 1 we see that the energies increase with decreasing width, but
the variation is not at a unified curve. There are three groups of data, each for a fixed
transverse widthl1b (l1 = 3, 4, 5, corresponding to large-, medium- and small-aspect-ratio
prisms, respectively). Four points in each group correspond to longitudinal lengthsm1a,
m1 = 2, 3, 4, 5. From figure 1 we see that the prism with large aspect ratio has a larger
energy gap, and the prism with small aspect ratio has a smaller energy gap, relatively.
This result is consistent with the results of Wang and Zunger [12]. The curves in figure 1
represent the variation of energy gap with the equivalent diameterd asd−1.37 andd−1.39,
given by previous theoretical calculations ([12] and [9] respectively). In fact the exponent
−1.37 (or−1.39) represents the degree of penetration of the wave function into the vacuum
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Figure 1. Calculated LUMO–HOMO energy gaps as a function of equivalent diameter for Si
quadratic prisms, compared with previous theoretical calculations. ‘Long’, ‘Middle’, and ‘Flat’
refer to prisms of widths 3, 4, and 5 (a/

√
2), respectively. The solid and dashed lines are

theoretical results of [12] and [9], respectively.

at the surface of the prism. If we take the potential barrier heightV0 as infinite we will obtain
the exponent of the effective-mass theory,−2.00, and if we takeV0 larger than that used in
the present calculation we will obtain an exponent between−1.37 and−2.00. The tight-
binding calculation [9] and the empirical pseudopotential calculation [12] all assumed that
the boundary of the silicon clusters is totally passivated by hydrogen atoms, and obtained
the nearly same exponent:−1.39 and−1.37, respectively. This means that the authors
have taken suitable interaction parameter between the silicon and hydrogen atoms, though
in different models. When oxygen or other atoms passivate the boundary of the Si clusters,
the degree of penetration of the wave function into vacuum will be different, and then we
will obtain a different exponent of the variation of the energy gap.

Using (10) we calculated the optical transition matrix elements for C1 and C2 states
to V1 and V2 states. It was found that the optical transition matrix elements are small
compared to the direct transition as in bulk GaAs (a few electron volts), which means the
energy gap is pseudo-direct, as shown by the wave function composition. When the width
l1 and lengthm1 of the prism decrease the optical transition matrix elements increase due
to the mixing of the bulk1 states and near-0 states. When the composition of the ground
LUMO state changes from mainly four bulk X states in theXY -plane of the Brillouin zone
to two bulk X states on theZ-axis for the small-aspect-ratio structures, there is an abrupt
increase of the optical transition matrix elements for the ground LUMO state (C1) to the
ground HOMO state (V1). The matrix elements increase by about three orders of magnitude
(typically from 10−7 to 10−4 eV) for the cases ofl1 = 5 and 4, and increase by one order
of magnitude from 10−5 to 10−4 eV for the case ofl1 = 3, asm1 decreases from five to
two. Using (11) we calculated the lifetimes of the transition for the C1 state to the V1 state,
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which are shown in figure 2. From figure 2 we see clearly the abrupt change of the lifetime,
from the millisecond range to the microsecond range or less. These results can explain why
all the theoretical calculations [9, 11, 12] always obtained divergence for transition matrix
elements (or lifetimes), but relatively unified energy gaps. The transition matrix element
depends sensitively on the shape of the cluster, i.e. the composition of the wave function
of the ground LUMO state.

Figure 2. Radiative lifetimes as a function of equivalent diameter for Si quadratic prisms.

We compare our theoretical results with the room-temperature time-resolved PL
experiment for porous Si [19]. The main emission peaks and lifetimes observed by
Calcott et al are schematically shown in figure 3. If we consider thel1 = 5 (19.2 Å),
m1 = 5 (27.2Å) results, we see that the lowest transitions are C1–V1(V2) and C2–V1(V2)
(because V1 and V2 are degenerate); the optical transition energies are 2.046 and 2.062 eV,
respectively, with an energy difference of 16 meV. The corresponding optical transition
matrix elementsQnn′ (10) are 7.37× 10−7 and 5.04× 10−5 eV, respectively. Inserting the
Qnn′ into (11) (n = 2.6), we obtain lifetimes of 1.4 ms and 20µs respectively, which are
in agreement with the experiment. This result verifies that there exist optical transitions
between quantum confinement states in porous silicon, though the luminescence strength is
not large enough to explain the strong luminescence. For the normal aspect ratio structures
though, the transition matrix elements are small for the C1–V1 transitions, but increase by
three to four orders of magnitude for the C2–V1 transitions, just as in the above case. The
energy difference between the C1 and C2 states ranges from a few millielectron volts to
20 meV, therefore the room-temperature luminescence of the porous or nanocrystallite Si
may be more efficient than the low-temperature luminescence.

It was found that the experimental PL energy is generally smaller than the theoretical
energy gap (or exciton energy) for the Si nanocrystals of the same size [6, 7]. Hill and
Whaley [13] obtained smaller exciton energies in agreement with the measured PL energies.
They attributed the agreement to the accuracy of their tight-binding description with the
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Figure 3. A schematic depiction of the main emission peaks and lifetimes observed by Calcott
et al [19] for porous Si.

expanded basis, rather than the non-perturbative Coulomb treatment. We propose another
reason. The exciton energy for a sphere is usually calculated by [12, 20]

Ex = Egap − 3.572

εd
− 0.248ERy (14)

where the second term is the Coulomb term, and the third term is a correlation energy
correction. ε is the dielectric constant, andERy = µe4/ε2h̄2; µ is the reduced mass of an
electron–hole pair. One generally used the bulk Si valueε = 11.91 andERy = 8.18 meV,
and the resultingEx correction is much smaller than the energy gap except for very small
diameters [12].

Actually since the Si nanocrystals are surrounded by air, the image charges will have a
large effect on the effective Coulomb potential in spheres. We calculated the image charge
effect in isolated quantum wires [21], and found that the effective potential approaches
the Coulomb potential in vacuum at largez-distance. The exciton binding energy is much
larger than that in the bulk. For example: for a isolated Si wire of radius 15Å, the effective
radius is 0.2aB(εh̄2/µe2). From figure 2 of [21] we obtain the exciton binding energy
Ex = 60ERy = 0.49 eV. We expect that the exciton binding energy will be larger for the
isolated Si sphere with the same radius. This work is in progress.

4. Results for GaAs and ZnSe nanocrystallites

Our model can be applied equally to other semiconductor nanocrystallites, because the
model does not impose any restriction condition on the boundary, only a constant potential
barrier. For the GaAs and ZnSe nanocrystallites we take ‘harder’ boundary barriers:V0 = 8
and−6 eV for the LUMO and HOMO states, respectively. The energy gaps as functions
of the equivalent diameter are shown in figure 4. From figure 4 we see that the energy gaps
vary with the equivalent diameterd asd−1.477 andd−1.655 for the GaAs and ZnSe prisms,
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Figure 4. Calculated LUMO–HOMO energy gaps as functions of the equivalent diameter for
GaAs and ZnSe prisms of width 4(a/

√
2). The solid and dashed lines are curves fitted as

d−1.477 (GaAs) andd−1.655 (ZnSe), respectively.

respectively. The exponent factors depend on the potential barrier height used. The wave
functions of the GaAs prisms are mainly composed of bulk X states: four X states in the
XY -plane of the Brillouin zone for them1 = 5, 4 cases, and two X states on theZ-axis for
them1 = 3, 2 cases, just as in the case of silicon. This means that the GaAs prisms of small
size become indirect gap, which has been predicted for the cases of dot [22] and wire [18].
For the bulk energy band of GaAs the0 and L states are all lower than the X states, due
to the smaller effective masses of the0 and X energy valleys; under the same confinement
condition the quantum states of these two valleys become higher than that of the X valley,
which can be checked by effective-mass equations similar to (10) and (11). Therefore, there
are four or two LUMO states with close energies, composed of bulk X states. On the other
hand, for ZnSe prisms the wave functions of the LUMO states are mainly composed of
bulk 0 and near states, hence the LUMO state is singlefold. Unlike the case of silicon, the
two HOMO states are not twofold degenerate for the GaAs and ZnSe cases (except for the
GaAs of l1 = 4 andm1 = 2), while the second and third HOMO states or the third and
fourth HOMO states are twofold degenerate.

Though the GaAs prism is indirect energy gap, the optical transition matrix elements
are larger than those of the Si prisms by about two orders of magnitude for the same width,
and increase with decreasing width. In the case ofm1 = 3 the transition matrix element
of the C1–V1 transition becomes unexpectedly small (10−6 eV), which is caused by the
change of symmetry in the HOMO state. This point will be discussed below. The ZnSe
prisms are always direct energy gap with large optical transition matrix elements (∼eV).
Because the bulk X states are far higher than the bulk01 state by 1.7 eV, and furthermore
the effective mass of the ZnSe01 state is relatively large (0.15m0), the bulk01 state is
always lower than the bulk X states as the width of prism decreases. For the cases of
m1 = 3 and 2 the optical transition matrix elements of the C1–V2 transition are large, while
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those of the C1–V1 transition are very small. It is also caused by the change of symmetry
of the V1 state. The wave function of these V1 states consist of no components of bulk
0 state and states on theZ-axis of the Brillouin zone, which are similar to the T1 state
predicted by the tight-binding cluster model [23]. Experimentally it is found that a II–VI
compound semiconductor cluster of 20–200Å shows good luminescence character [14–16];
our results prove theoretically that the optical transition is direct in these thin quantum wires
or dots, and gives a good prospect for them in practical applications. Theoretically one of
the present authors (J B Xia) has proposed a spherical tensor model [24, 25] based on the
effective-mass theory to deal with the HOMO states of the semiconductor nanosphere, but
from the present calculation it seems that for very thin nanocrystallites the HOMO states
will have different symmetry due to mixing of the central and edge states in the Brillouin
zone, which is beyond the applicable range of the effective-mass theory.

5. Summary

In this paper we studied the electronic states and optical transition properties of three
semiconductor nanocrystallites, Si, GaAs, and ZnSe, using the empirical pseudopotential
homojunction model. The energy levels, wave functions, optical transition matrix elements,
and lifetimes are obtained for quadratic prisms with width from 14 to 27Å. It is found
that the three kinds of prism have different quantum confinement properties. For Si prisms,
the energy gaps vary with the equivalent diameterd asd−1.37, in agreement with previous
theoretical calculations. For the samed the energy gaps are slightly different for different
shapes: large for the prism with large aspect ratio; small for the prism with small aspect
ratio. The exponent ofd depends on the boundary barrier height, i.e. the penetration extent
of the wave function into the vacuum. The wave function of the LUMO states consists of
mainly bulk X states: four X states in theXY -plane of the Brillouin zone in the case of
normal aspect ratio; two X states on theZ-axis in the case of small aspect ratio. The optical
transition matrix elements are much smaller than that of direct transition, and increase with
decreasing width. The corresponding lifetimes decrease from the millisecond range to the
microsecond range, and the change is abrupt depending on the symmetry and composition
of the wave function of the LUMO and HOMO states. For GaAs prisms, the energy gap
is also pseudo-direct, but the optical transition matrix elements are larger than those of Si
prisms by two orders of magnitude for the same width. For the ZnSe prisms, the energy
gap is always direct, and the optical transition matrix elements are comparable with those
of direct energy gap bulk semiconductors. In some cases the symmetry of the HOMO state
changes, resulting in an abrupt decrease of the transition matrix element. The calculated
lifetimes of the Si prism, and the positions of PL peaks are in agreement with experimental
results for porous Si [19]. The potential barrier heightV0 values in our model do influence
the energy gap and the exponent of their variations. TheV0 values for Si taken in this
paper are fitted to the energy gap results of the tight-binding and empirical pseudopotential
calculations [11, 12]. TheV0 has physical meaning as the band offset between the quantum
dot and the surrounding material. For example, if we takeV0 as the band offset between
Si and SiO2, then we can study Si quantum dots embedded in SiO2. In the case of an
Si quantum dot in vacuum with H2 saturated dangling bonds, there are no experimentally
determinedV0 values for the conduction band and valence band, so we can only fit them by
comparing with other theoretical calculations which have taken into account the interaction
between Si and H atoms. For GaAs and ZnSe, we take largerV0 values to simulate the
case of quantum dots in vacuum. On the other hand, it was found that the wavefunctions
and the optical transition elements are less affected by theV0 values.
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Thus our model is suitable for studying the quantum confinement effect caused by
the shape and volume of the material, and theV0 values can represent different interface
cases. This theoretical model has some advantages compared to the direct pseudopotential
calculation. Our calculation is actually a variation in calculation for the LUMO states and
HOMO states. Therefore if we take relatively complete basic functions, the LUMO states
and HOMO states can be calculated accurately. While in the direct pseudopotential or tight-
binding cluster calculations all states below the energy gap should be calculated, the needed
states around the energy gap are higher than all the other states which contribute very little
to the optical transition. The wave functions calculated by our model consist obviously
of components of bulk states in the Brouillon zone, so it is convenient for analysis of the
transition property. Our model does not put any restriction condition on the boundary,
hence it can be applied to any semiconductor nanocrystallites, and takes into account the
pure quantum confinement effect.
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